A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed in vitro, preclinical and clinical data to facilitate dose selection for CK-301 (cosibelimab), an anti-PD-L1 monoclonal antibody (mAb), for ongoing and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).

A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed with in vitro, preclinical and clinical data to facilitate dose selection for anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab) for upcoming and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).

A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed with in vitro, preclinical and clinical data to facilitate dose selection for anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab) for upcoming and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).

A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed with in vitro, preclinical and clinical data to facilitate dose selection for anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab) for upcoming and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).

A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed with in vitro, preclinical and clinical data to facilitate dose selection for anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab) for upcoming and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).

A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed with in vitro, preclinical and clinical data to facilitate dose selection for anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab) for upcoming and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).

A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed with in vitro, preclinical and clinical data to facilitate dose selection for anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab) for upcoming and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).

A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed with in vitro, preclinical and clinical data to facilitate dose selection for anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab) for upcoming and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).

A semi-mechanistic pharmacokinetic/target-occupancy (PK/TO) model was developed with in vitro, preclinical and clinical data to facilitate dose selection for anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab) for upcoming and future clinical trials in oncology patients. The model was used to compare the PK and tumor target occupancy (TO) at steady state under various dosing regimens with cosibelimab to those with three marketed anti-PD-L1 mAbs (i.e., atezolizumab, durvalumab and avelumab).